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A Method for the Assessment of Disease Associations
with Single-Nucleotide Polymorphism Haplotypes
and Environmental Variables in Case-Control Studies
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The rough draft of the human genome map has been used to identify most of the functional genes in the human
genome, as well as to identify nucleotide variations, known as “single-nucleotide polymorphisms” (SNPs), in these
genes. By use of advanced biotechnologies, researchers are beginning to genotype thousands of SNPs from biological
samples. Among the many possible applications, one of them is the study of SNP associations with complex human
diseases, such as cancers or coronary heart diseases, by using a case-control study design. Through the gathering
of environmental risk factors and other lifestyle factors, such a study can be effectively used to investigate interactions
between genes and environmental factors in their associations with disease phenotype. Earlier, we developed a
method to statistically construct individuals’ haplotypes and to estimate the distribution of haplotypes of multiple
SNPs in a defined population, by use of estimating-equation techniques. Extending this idea, we describe here an
analytic method for assessing the association between the constructed haplotypes along with environmental factors
and the disease phenotype. This method is also robust to the model assumptions and is scalable to a large number
of SNPs. Asymptotic properties of estimations in the method are proved theoretically and are tested for finite sample
sizes by use of simulations. To demonstrate the use of the method, we applied it to assess the possible association
between apolipoprotein CIII (six coding SNPs) and restenosis by using a case-control data set. Our analysis revealed
two haplotypes that may reduce the risk of restenosis.

Introduction

A draft of the human genome map with 190% cover-
age has recently been completed, owing to both public
and private efforts (International Human Genome Se-
quencing Consortium 2001; Venter et al. 2001). A pre-
liminary examination of the human genome map indi-
cates that there may be 30,000–40,000 functional genes
throughout the genome (International Human Genome
Sequencing Consortium 2001). Additionally, millions of
SNPs have been identified—including many in coding
regions and promoter regions, collectively referred to
here as “coding SNPs” (cSNPs) (International SNP Map
Working Group 2001). By use of recently developed ar-
ray technologies (Chee et al. 1996; Wang et al. 1998),
biomedical researchers are now able to genotype bio-
logical samples for thousands of SNPs, with the possi-
bility of genotyping more than a million genotypes in
the near future. One important application of these re-
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cent advances is the study of the associations between
SNPs and complex human diseases, such as cancer, coro-
nary heart disease, diabetes, and Alzheimer disease (Risch
and Merikangas 1996; Chakravarti 1998, 1999; Nicker-
son et al. 1998).

In the study of chronic diseases, a widely accepted
design strategy is the case-control study (Breslow and
Day 1980; Schlesselman 1982). Typically, a case-con-
trol study identifies a sample of diseased subjects and
a sample of disease-free subjects from a well-defined
population. On each case patient or control individ-
ual, the study gathers information on medical history
and environmental factors, as well as on multiple SNPs,
via genotyping of biological samples. Given the limita-
tions in throughput and the cost of current genotyping
technologies, it is prudent to focus on a set of candidate
genes and then to select 10–100 SNPs from each can-
didate-gene region. Both SNPs and environmental fac-
tors can then be used in the assessment of their associ-
ations with case-control outcome.

Numerous methods have been proposed to evalu-
ate associations of SNPs and/or environmental factors
with the disease phenotype. One possible approach is
to adopt a logistic regression methodology (Breslow
and Day 1980), treating SNPs as covariates, and to
use some stepwise strategy to process all SNPs sys-
tematically (Cordell and Clayton 2002). An alterna-
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tive approach is to haplotype for multiple SNPs with-
in candidate genes (Hallman et al. 1999; Drysdale et
al. 2000; International SNP Map Working Group
2001; Patil et al. 2001; Stephens et al. 2001), since
the number of haplotypes within candidate genes is
much smaller than the theoretical number of all possi-
ble haplotypes. Hence, haplotyping serves as an ef-
fective data-reduction mechanism; treating the iden-
tified haplotypes as covariates, one can establish their
associations with the disease phenotype. The third
approach is to estimate haplotype frequencies in cases
and in controls and to evaluate differences in haplo-
type frequencies, since such differences are likely to
be indicative of haplotype associations with the dis-
ease phenotype (Fallin et al. 2001).

In the present article, we describe a haplotype-based
method that retains the advantages of the above methods
and that avoids potential limitations in their applications
to case-control studies (see the “Discussion” section). The
basic strategy is to infer distributions of haplotypes from
genotype data and to correlate haplotypes and environ-
mental covariates with the disease phenotype. Techni-
cally, our idea is to treat haplotypes, if unknown, as latent
variables and to construct estimating equations by inte-
grating out these latent haplotypes. The “Methods” sec-
tion describes the notation, assumptions, the model, pro-
cedures for estimations, and inferences, as well as analytic
strategies for the assessment of haplotype-based associ-
ations, gene-gene interactions, and gene-environment in-
teractions. Monte Carlo simulations are performed to
assess the accuracy of estimations and the approximation
of inferences with finite sample sizes. The method is il-
lustrated through its application to a study of restenosis.

Methods

Notation

Consider a case-control study with n subjects (i p
), with cases denoted by and controls1,2, … ,n d p 1i

denoted as . Let denote a vector′d p 0 x p (x , … ,x )i i i1 ic

of c collected covariates, such as clinical variables, demo-
graphic variables, and medication history. Also obtained
from the ith subject is a biological sample, which is ge-
notyped for multiple SNPs. Let de-g p (g ,g , … ,g )i i1 i2 iq

note linearly ordered SNP genotypes within a single
candidate gene (or multiple SNPs in a consecutive se-
quence). Throughout most of the present article, we
focus on a single candidate gene at a time, unless oth-
erwise noted (extension to multiple candidate genes is
straightforward by including an additional subscript).
Let denote a pair of alleles at the jth locus1 2g p g :gif if if

in the ith individual, where for the kth allele has akgif

value of either 0 or 1 for the two possible alleles. Be-
cause of the nature of the genotyping technology, the

parental origin (or phase) of individual alleles is un-
known. Let p denote a vector ofQ (Q ,Q , … ,Q )i i1 i2 iq

phase indicators: implies that the first allele atQ p 0ij

the jth locus for the ith subject, , is inherited from1gif

the father. Then, in contrast, implies that is1Q p 1 gif if

inherited from the mother. When phases are known,
define two haplotypes, denoted as . Each1 2(g ,Q ) h :hi i i i

haplotype consists of q SNP alleles, denoted as kh pi

.k k(h , … ,h ), k p 1,2i1 iq

A Penetrance Function

The associations of haplotypes of multiple SNPs and
other covariates with the disease phenotype are quan-
tified through the penetrance function (i.e., penetrance
of haplotypes and other covariates to the disease pheno-
type). To model this penetrance function, we consider a
logistic regression that relates haplotypes and covariates
with the disease phenotype. Now let denote1 2I(h ,h ,x ,b)i i i

a function of haplotypes , covariates , and co-1 2(h ,h ) (x )i i i

efficients b. The logistic penetrance function can be for-
mally defined as

11 2Pr (d p 1 d h ,h ,x ) p ,i i i i 1 21 � exp [�a � I(h ,h ,x ,b)]i i i

(1)

which takes values between 0 and 1, quantifying the
probability of being affected. The function 1 2I(h ,h ,x ,b)i i i

is chosen according to the hypotheses of interest. For
example, to assess the main associations of haplotypes
and other covariates, one may choose

1 2 ′ 1 2 ′I(h ,h ,x ,b) p b [K(h ) � K(h )] � b x , (2)i i i 1 i i 2 i

in which represents a vector of haplotype indicatorK(7)
functions. Depending on the context, the list of haplotypes
may be fully specified, if they are chosen prior to the
analysis, or may include all haplotypes observed in the
data set. Haplotypes with high frequencies are termed
“common haplotypes.” As in any typical categorical data
analysis, it is desirable to use a common haplotype as the
reference haplotype, unless a specific reference haplotype
is preferred. “Rare” haplotypes (e.g., those observed with
a frequency !5 within a given data set) may be collapsed
into a composite haplotype for analytical purposes. Other
choices for the function are listed below, in the “An-I(7)
alytic Strategies” subsection. The coefficient b in equation
(1) can be estimated using the data collected from a case-
control study design. Thus, the probability of being af-
fected in a case-control study is

1 2m p f(d p 1 d h ,h ,x )i i i i i

1
p , (3)1 2 ′1 � exp [�y � I(h ,h ,x ,b)]i i i
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in which the intercept parameter y p a � log{[(1 � v)h]/
[v(1 � h)]} represents a shifted intercept on the logit scale,
v is a fraction of cases in the study, and h is the probability
of disease in the general population (Prentice and Pyke
1979). The rationale for choosing the logistic regression
function is as follows: (i) regression coefficients (b ,b )1 2

are readily interpretable as log odds ratios, and log odds
ratios approximate log relative risk when disease inci-
dence is low (Prentice and Mason 1986); (ii) the logistic
regression technique has been well studied in biostatisti-
cal literature, and its statistical properties are well known;
and (iii) logistic regression is routinely applied to epide-
miological studies, to interpret results from case-control
studies (Breslow and Day 1980), and is thus readily ac-
cepted in the study of gene-environment interactions. It
is important to note that one regression coefficient is
introduced for each common haplotype. If the number
of common haplotypes becomes too large, then there
may be too many parameters for estimation (see the
“Discussion” section).

An Estimation Procedure

Conceptually, the analytic objective is to estimate pa-
rameters . If haplotypes were observable (e.g., in fam-(y,b)
ily studies or by experimental methods), one could con-
struct an estimating function for on the basis of the(y,b)
log likelihood function for logistic regression model (3).
When unphased genotypes are observed in the studies,
one can treat phases of genotypes as latent variables.
After obtaining a posterior distribution of phase given
all observed data (phenotypes, genotypes, and covari-
ates), one can sum over all possible phases via the con-
ditional expectation of the estimating function given the
observed data. Setting the integrated estimating function
to 0 results in equations for the estimation of . Deri-(y,b)
vation of estimating equations is detailed in appendix A.

The estimates, denoted by , satisfy the followingˆ ˆ(y,b)
estimating equations:

ˆU (y)iˆ ˆU(y,b) p �( )ˆ
i U (b)i

1
p E (d � m ) d g ,d ,x� Q 1 2 i i i i i( )ˆi ˙[ ]I(h ,h ,x ,b)i i i i

1
p (d � m ) Pr (Q d g ,d ,x ) p 0 , (4)�� i i p i i i i( )Xi Q ii

where the first summation is over all n independent sam-
ples, where is the partial derivative of1 2 ˆ˙X p I(h ,h ,x ,b)i i i i

with respect to b, where is1 2 ˆI(h ,h ,x ,b) Pr (Q dg ,d ,x )i i i p i i i i

the posterior probability of the latent variables indexed
by haplotype frequencies (p), , given the ith individu-Q i

al’s observed data, , and where p is a vector of(g ,d ,x )i i i

the population frequencies of haplotypes. Under the
rare-disease assumption, this conditional probabili-
ty may be approximated to a simple formulation (see
appendix B). Under Hardy-Weinberg equilibrium, the
joint distribution of the paired haplotypes is equal to
the product of the two marginal distributions—that is,

. Hence, this conditional proba-1 2 1 2f (h ,h ) p f (h )f (h )p i i p i p i

bility may be expressed as

1 2 1 2exp [d I(h ,h ,x ,b)]f (h )f (h )i i i i p i p iPr (Q d g ,d ,x ) ≈ ,p i i i i 1 2 1 2� exp [d I(h ,h ,x ,b)]f (h )f (h )i i i i p i p iQi

(5)

which is computable provided that the parameter b is
known. Note that, for controls ( ), the above pos-d p 0i

terior probability degenerates to a function of p through
the joint distribution functions. Also note that the above
conditional probability (eq. [5]) does not depend on the
intercept y or a for either cases or controls, implying that
the estimation would be robust regardless of this intercept.

Under the rare-disease assumption, one can treat the
control population as representative of the general pop-
ulation if it is a population-based case-control study
(otherwise, one has to assume that selection of controls
does not depend on SNPs and hence is unbiased) and
estimate haplotype frequencies, , forp p (p ,p , … ,p )1 2 H

all possible haplotypes , using only con-(h ,h , … ,h )1 2 H

trols. To proceed with the estimation of haplotype fre-
quencies in controls, we propose to use the following
estimating equation, which has been derived elsewhere
(Li et al., in press). Now let , in′F p (F ,F , … ,F )i i1 i2 iH

which is the differ-1 2F p I(h p h ) � I(h p h ) � 2pij i j i j j

ence between the observed number and the expected
number of the jth haplotype counts from the ith in-
dividual. Note that —and, hence, —is not specifiedF Fij i

unless phase is known. The equation for the estima-Q ij

tion of haplotype frequencies may be written as

( )U(p) p U (p) p (1 � d )E F d g ,d ,x� �i i Q i i i ii
i i

( )p (1 � d )F Pr Q d g ,d ,x p0 . (6)�� i i p i i i i
i Qi

The estimate of p by use of estimating equation (6) is
similar to that by the expectation-maximization algo-
rithm (Excoffier and Slatkin 1995), except that the im-
plementation based on equation (6) is more efficient and
scalable to deal with a large number of SNPs.

The estimates of , denoted as , are jointlyˆ ˆ ˆ(y,b,p) (y,b,p)
estimated using equations (4) and (6)—that is,

ˆU (y)i

ˆ ˆ ˆˆU(y,b,p) p U (b) p 0 . (7)� i( )i
ˆU (p)i
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To proceed with the estimation, one needs to compute
the derivative of with respect to all parametersU(y,b,p)

when using the Newton-Raphson method. As(y,b,p)
shown in appendix C, the derivative matrix of joint
estimating equation (7), denoted as , may beG(y,b,p)
written as

′E[m (1 � m ) dd ,g ,x ] E[m (1 � m )X dd ,g ,x ] 0i i i i i i i i i i i
′E[X m (1 � m ) dd ,g ,x ] E[X X m (1 � m ) dd ,g ,x ] 0� i i i i i i i i i i i i i( )[i 0 0 2(1 � d )1i

′ ′ �10 d cov[(d � m ),X dd ,g ,x ] cov[(d � m ),F V dg ,d ,x ]i i i i i i i i i i i i i
′ ′ �1� 0 d cov[X (d � m ),X dd ,g ,x ] cov[X (d � m ),F V dg ,d ,x ] ,i i i i i i i i i i i i i i i( )]

�10 0 (1 � d )V var[F dd ,g ,x ]i i i i i

(8)

where 0 is a zero matrix of appropriate dimension. Con-
ditional means, variances, and covariances are computed
in the usual way in the above estimating equation.

Using the Newton-Raphson method, one can start from
an initial value and iterate it to a new value(0) (0) (0)(y ,b ,p )

via(1) (1) (1)(y ,b ,p )

(1) (0)y y
(1) (0) (0) (0) (0) �1 (0) (0) (0)b p b � G(y ,b ,p ) U(y ,b ,p )( ) ( )
(1) (0)p p

until convergence in all parameters is reached. Note that
the burden of computing the conditional expectation over
phase increases exponentially with the number of SNPQi

loci. Thus, to ensure computational feasibility, our pro-
cedure approximates the expectation; for example,

( ) ( )E F d g ,d ,x p (1 � d )F Pr Q d g ,d ,x�Q i i i i i i p i i i ii
Qi

( )p (1 � d )F Pr Q d g ,d ,x ,� i i p i i i i
Pr (Q dg ,d ,x ) is nontrivialp i i i i

using only haplotypes with nontrivial haplotype frequen-
cies. This procedure has been described elsewhere (Li et
al., in press). Note that, in the framework of LOD-score
methods (or likelihood), the estimating equation is the
counterpart of the first derivative of the log likelihood
(i.e., the score estimating equation), whereas the derivative
of estimating function (i.e., the second derivative of the
log likelihood function) is the counterpart of the infor-
mation matrix.

Asymptotic Properties and Inferences

Joint estimating equation (7) is written as the summa-
tion of individual estimating functions over n independent
samples. Applying the central-limit theorem (Godambe
1960; Liang and Zeger 1986), one can prove that, under
the regularity conditions, the estimated parameters are

consistent as n approaches infinity. Moreover, the esti-
mated parameters have an asymptotic normal distribution
with mean and covariance S. One of the key reg-(y,b,p)
ularity conditions is that the estimating functions in equa-
tion (7) approach 0 as the sample size increases (shown
in appendix D). The covariance matrix, S, can be esti-
mated by

�1 ′ �1ˆ ˆ ˆ ˆ ˆ ˆ[ ]ˆ ˆ ˆG(y,b,p) var U(y,b,p) G (y,b,p) ,

where is estimated by .′ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆvar [U(y,b,p)] � U (y,b,p)U (y,b,p)i ii

This asymptotic distribution can now be used to construct
either Wald-type or score-type statistics for inferences.

Analytic Strategies

The formulation of in equation (1) can be1 2I(h ,h ,x ,b)i i i

modified to address various questions. Below, we list three
formulations that may be useful as analytic strategies:

Haplotype-specific effects.—An immediate interest is
to assess the disease associations with haplotypes. Ear-
lier, we discussed the selection of haplotypes and let H
denote the total number of those haplotypes. To assess
their associations with the disease phenotype, one choos-
es equation (2) for , controlling for environ-1 2I(h ,h ,x ,b)i i i

mental covariates , and . Under the′x b p (b , … ,b )i 1 11 1H

null hypothesis that the lth haplotype is not associated
with the disease phenotype, the corresponding log odds
ratio equals 0—that is, . To test this null hy-H :b p 00 1l

pothesis, one may use the Wald-type statistics for making
inferences.

Diplotype-specific effects.—Although haplotype-based
associations are of interest, the disease association could
also be genotype specific; that is, the disease associates
with genotypes at multiple loci formed by a pair of haplo-
types, referred to as a “diplotype” (to differentiate it from
a genotype formed by individual paired SNP alleles). Dis-
ease associations with a diplotype may be categorized by
four different penetrance modes: dominant, recessive, ad-
ditive, or codominant. To capture the mode of diplotype
associations, one needs to recode corresponding diplo-
types under each mode of penetrance. Suppose that ish̃
the target haplotype of interest. Under a dominant mode,
we would use the following indicator function:

1 2 1 2 ′I(h ,h ,x ,b) p b K(h ,h ) � b xi i i 1 i i 2 i

˜ ˜1 21 h p h or h p h1 2 i iand K(h ,h ) p .i i {0 otherwise

Similarly, if the recessive mode is considered, then one
uses the same regression function but with

˜ ˜1 21 h p h and h p h1 2 i iK(h ,h ) p .i i {0 otherwise
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Table 1

Distribution of Haplotypes

Designation Haplotype Frequency

0 00100000000000000000 .2355
1 00000010000000000000 .1825
2 00000100101100001000 .1725
3 00000100101100000000 .1170
4 01000100101100000000 .1125
5 00001100101100001000 .0970
6 00000011000000000000 .0360
7 00000010000000010000 .0170
8 00000010000000000001 .0060
9 00000100101100000100 .0055
10 01010100101100000000 .0050
11 00000100101100001010 .0045
12 00000010010000000000 .0035
13 10000100101100001000 .0030
14 00000100101110001000 .0010
15 00001100101100101000 .0010
16 00000010000001000000 .0005

NOTE.—Estimated from 2,000 haplotypes created by use of Hud-
son’s (2002) simulation program of the coalescence process.

Also, to model additive penetrance, one may choose the
following indicator function:

˜ ˜1 2 1 2K(h ,h ) p I(h p h) � I(h p h) .i i i i

Last, consider the codominant penetrance by two haplo-
types . The regression model is now written as˜ ˜(h ,h )1 2

1 2 1 2 1 2 ′I(h ,h ,x ,b) p b K (h ,h ) � b K (h ,h ) � b xi i i 11 1 i i 12 2 i i 2 i

˜ ˜1 21 h p h or h p h1 2 i j i jand K (h ,h ) p , j p 1,2 .j i i {0 otherwise

The last model encompasses both dominant and additive
modes as shown above. Specifically, if only one of the
two coefficients is not equal to 0, then the last(b ,b )11 12

model implies the dominant mode. If both coefficients
are �0 and if the penetrance associated with(b ,b )11 12

both haplotypes and is the same, then the last model˜ ˜h h1 2

implies the additive mode.
Interactions between haplotypes and covariates.—

The study of gene-environment interactions has long
been of interest in genetic epidemiology (Khoury et
al. 1993). In recent years, researchers in pharmaco-
logical research have been very interested in studying
the interactions between drug treatment and genes.
Additionally, researchers in clinical sciences have been
interested in personalized medicine in the sense that
physicians would like to prescribe treatments based
on the patients’ genotypes. To model such gene-envi-
ronment interactions, one would typically gather data
on an array of covariates, including clinical, environ-
mental factors or history of medications. We model the
haplotype-covariate interaction via

1 2 ′ 1 2I(h ,h ,x ,b) p b [K(h ) � K(h )]i i i 1 i i

′ 1 2� b x � b [K(h ) � K(h )]x ,2 i 3 i i i

where the third term, , quantifies the′b p (b ,b , …)3 31 32

interactions of all candidate haplotypes with the single
covariate. Indeed, one can postulate other models to
depict interactions that may be dominant, recessive, or
codominant, in addition to the additive mode described
above.

Monte Carlo Simulation Studies

Recognizing that the inference methods above are based
on asymptotic theories, we want to assess how well as-
ymptotic results approximate distributions of the results
with finite samples. Probably, the best way to evaluate
the finite sample properties is via Monte Carlo simula-
tion studies. The study population of haplotypes is sim-
ulated through a coalescent process. Simulation studies

were conducted under both null hypotheses and alterna-
tive hypotheses. Using the simulations, we have also dem-
onstrated possible confounding effects due to the admix-
ture of subpopulations if the admixture is not adjusted
in the model.

Simulating Data via the Coalescent Process

The simulation scheme generates a population of one
million people, whose ages are randomly distributed from
20 to 80 years, with an equal number of men and women.
We introduce a single candidate gene with 20 SNPs. The
population distribution of all haplotypes is estimated on
the basis of 2,000 haplotypes, generated by a simulation
program of the coalescent process (obtained from R.
Hudson’s Web site; see also Hudson 2002), in which
one population is assumed, the number of segregation
sites (i.e., SNPs) is specified as 20, the population re-
combination rate ( , where is the effectiveR p 4N r Ne e

population size and r is the recombination rate) is spec-
ified as 0.4, and the number of sites between which the
recombination can occur constitutes 1 kb. In the resulting
population, 17 haplotypes were observed, with frequen-
cies ranging from 0.23 to 0.001, estimated using 2,000
haplotypes (table 1). Individuals’ genotypes are generated
by randomly drawing a pair of haplotypes from the dis-
tribution. We used the penetrance functions described in
equations (1) and (2), set log odds ratio values, and then
computed the expected disease probability. On the basis
of the probability, we simulated the binary phenotype
status by using a Bernoulli process. Treating the simulated
one million individuals as the population, we generated
a case-control sample by randomly selecting a subset of
cases and controls with an equal number in each group.
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Analyzing the selected case-control sample data, we ob-
tained estimates of the log odds ratios and their SEs for
common haplotypes and covariates by using the method
described above. For each specific set of coefficients, we
repeated the simulation 1,000 times and summarized the
simulation results of sample variations.

Statistical Measurements

We computed four customarily used measures to eval-
uate the performance of the proposed method in the esti-
mation of log odds ratios . From the jth replicate, letb̂

and represent the true and the estimate of the jthˆb bj j

coefficient in equation (1), respectively. The first measure
is the average bias in the estimation of b:

R1 rˆBias(b ) p (b � b ) ,�j j jR rp1

in which the summation is over all R replicates. In the
current simulation study, we chose . ThisR p 1,000
quantity measures actual biases associated with each
haplotype in the estimation of log odds ratios. The sec-
ond measure is the accuracy of the estimate, quantified
via the mean squared error (MSE), and is defined as

R1 r 2ˆMSE p (b � b ) .�j j jR rp1

Now, let denote the estimated SE of forr r rˆ ˆ ˆSE p SE (b ) bj j j

the rth replicate and let

R1 r ¯ 2˜ ˆ� ˆSE p (b � b )�j j jR � 1 rp1

denote the estimate of the true SE of . The third mea-rb̂j

sure is the average bias in estimating the SE of :b̂

R1 rˆ ˜Bias(SE ) p (SE � SE ) .�j j jR rp1

This measure quantifies the accuracy of the estimated
SEs. The fourth measure is the coverage probability of
the CI, at the significance levelr r r rˆ ˆˆ ˆ(b � Z SE , b � Z SE )j a j j a j

of a (in this simulation study, ), that includesa p 0.05
the true value . An acceptable coverage probabilitybj

should approximate .1 � a

Simulation Studies under the Null Hypothesis

Under the assumption that none of haplotypes are asso-
ciated with the disease, we set b11 p 0, b12 p 0, …, b1H

in equation (1). For the remaining parameters in equa-
tion (1), we set a p �7, b21(sex) p 0, and b22(age �
20 years) p 0.05. In the current simulation, we chose

the most frequent haplotype as the reference haplotype
for all simulations. We performed simulation studies un-
der the null hypothesis with varying sample sizes—100,
500, and 1,000—with equal numbers of cases and con-
trols in each simulated data set. Results of the simulation
are reported in table 2. Note that, as sample sizes vary,
some haplotypes become rare in certain replicates and,
hence, their corresponding coefficients are not computed
individually, consequently causing missing estimates in
some replicates. To avoid biases associated with such
missingness, we choose to report estimates only if 600
of 1,000 simulation replicates yield estimated haplotype
frequencies. Table 2 shows the four measures to evaluate
the estimated coefficients, SEs, and coverage probabili-
ties, for sample sizes of 100, 500, and 1,000. The first
part of table 2 shows these measures for the covariates,
which were sex and age. Clearly, all estimates are gen-
erally accurate and unbiased over the range of sample
sizes, and, as the sample size increases, the coverage
probabilities approach 0.95, the desired level. The sec-
ond part of table 2 shows the four measures evaluated
for the estimated haplotype-related parameters. In all,
10 common haplotypes are included, with respective fre-
quencies ranging from 0.006 to 0.235 (the most com-
mon haplotype is treated as the reference haplotype).
Under the null hypothesis, none of haplotypes are as-
sociated with the disease phenotype, and, hence, cor-
responding regression coefficients equal 0, as noted in
table 2 (under “True ”). Also note that, when the sam-bj

ple size is small, many less common haplotypes have
estimated haplotype frequencies below some threshold
(e.g., expected number of haplotypes should be greater
than or equal to five) and hence are not included in the
list of selected haplotypes, resulting in fewer haplotypes.
For example, 4 of the 10 haplotypes are absent in the
empirical data with a sample size of 100, and 2 are
absent with a sample size of 500; but all 10 are present
when the sample size increases to 1,000. Regardless of
sample size and frequencies of haplotypes, biases in the
estimated regression coefficients and SEs are small. Ac-
curacy, quantified by MSEs, steadily improves with in-
creasing sample sizes. Correspondingly, coverage prob-
abilities are generally ∼0.95, showing that statistical in-
ference maintains its appropriate type I error rate.

Simulation Studies under the Alternative Hypothesis

We assumed that two haplotypes, the third and the
eighth, were associated with the disease, with log odds
ratios of �1 and 5, respectively. A negative log odds
ratio (e.g., �1) indicates that an individual carrying
that haplotype has a reduced disease risk, 0.37 times
less than that of an individual carrying the most com-
mon haplotype. Similarly, a positive log odds ratio (e.g.,
5) indicates an increased risk, 148 times more than that
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of an individual carrying the most frequent haplotype.
As might be expected, the frequency of such a high-
risk haplotype needs to be quite low (0.017), without
causing an epidemic in the simulated population.

Table 3 shows the bias measures and coverage prob-
abilities in the same format as in table 2. Whereas two
haplotypes are shown to associate with the disease phe-
notype, estimated regression coefficients and their SEs
for both covariates center around the true values, and
biases decrease as sample sizes increase. Accuracy mea-
surements for some haplotypes are rather poor when the
sample size is small but are improved enormously when
the sample size increases to 500. Coverage probabilities
are smaller than the expected 0.95 when the sample size
is 100 but gradually approach 0.95 as the sample sizes
increase to 500 and 1,000. The second part of table 3
shows biases associated with the haplotypes. Biases are
minor, and coverage probabilities are generally ∼0.95.
Of particular interest are the two haplotypes associated
with the disease phenotype. For the third haplotype (2
in table 3), biases in the estimation of the log odds ratio
steadily decrease with increasing sample size, and biases
in the estimation of SEs drop significantly when the sam-
ple size increases from 100 to 500. Again, coverage prob-
abilities approach 0.95 as the sample size increases. Re-
garding the high-risk haplotype (7 in table 3), the biases
in the estimation of log odds ratios and their SEs grad-
ually decrease as the sample size increases. Interestingly,
the coverage probabilities are �0.95 at all sample sizes.
Note that rare haplotypes are not included in some of
simulation replicates, and their coefficients are thus not
estimated, resulting in truncation effects. It appears that
the truncation effects of the selection of completely es-
timated haplotypes might have a modest impact on cov-
erage probabilities.

Simulation Studies in the Presence of Population
Admixture

One concern with the direct assessment of genetic as-
sociation with disease phenotype in case-control studies
is the admixture of populations, without appropriate ac-
counting for population origin. Admixture of populations
occurs when an allele is associated with the population
origin and when different populations have different lev-
els of risks. In epidemiology literature, the admixture of
populations is considered a potential confounding factor
because of its association with both genetic factors and
disease phenotype (Rothman and Greenland 1998). An
effective way of controlling for such confounding effects
is to identify them and then to adjust for them in the
regression analysis. To illustrate the phenomenon of ad-
mixture, we performed the following simulation: Consid-
er a population with an admixture of two racial groups,
70% of European origin and 30% of African American

origin (proportions similar to those found in a recent mul-
ticenter study of breast cancer; see Britton et al. 2002).
Also assume that, in comparison with an individual of
European origin, an individual of African American origin
has twice the risk of disease. Suppose that haplotype dis-
tributions of these two populations are different. Hence,
by definition, the population origin may be a confounding
factor. In this simulation, none of the haplotypes were
associated with the disease phenotype. Using the coa-
lescent process described above, we generate haplotype
frequencies among whites. These are given in the second
part of table 4 (under “Frequency among Whites”). For
African Americans, we assumed that the second and
third haplotypes were absent, emulating the phenome-
non that certain haplotypes are prevalent among whites
but are nearly absent in people of African origin. Fre-
quencies for the remaining haplotypes among African
American are normalized to add up to 1. Under these
assumptions, the simulation creates a mixture of two
subpopulations. We chose a sample size of 500, with
250 cases and 250 controls.

Table 4 gives the bias measures and the coverage
probabilities from simulation studies in the presence
of population admixture. We have done two separate
analyses: with and without adjustment for the race
covariate. The results when the race covariate is in-
cluded in the logistic regression model are presented
under the heading “With Adjustment for Race.” All
estimated regression coefficients and their SEs, for co-
variates and haplotypes, appear to be unbiased and
accurate, and their coverage probabilities are gener-
ally ∼0.95. The results when the race covariate is not
included (i.e., without adjustment for population ad-
mixture) are presented under the heading “Without
Adjustment for Race.” Interestingly, estimated regres-
sion coefficients for sex and age, two covariates in the
first two models, are unbiased and accurate, as are
the estimates of their SEs, and coverage probabilities
are also ∼0.95, demonstrating that associations with
sex and age can be correctly assessed. However, es-
timated regression coefficients for haplotypes 1 and 2
are substantially biased (by as much as �1), accuracy
of estimates is rather poor, and the coverage proba-
bilities are grossly underestimated. Estimated SEs do
not have any significant biases, implying that the dis-
tribution of these biased estimates resembles that of
unbiased estimates. For the remaining haplotypes, es-
timated regression coefficients and their standard ap-
pear to be unbiased, accuracy is acceptable, and es-
timated coverage probabilities are ∼0.95. Indeed, this
result demonstrates how much population admixture
could affect estimated haplotype-associations and dem-
onstrates that such biases could be virtually eliminated,
once the confounding factor is controlled via the regres-
sion models.
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Table 4

Simulation Results for the Model with Admixture Population

WITH ADJUSTMENT FOR RACE WITHOUT ADJUSTMENT FOR RACE

COVARIATE MEAN TRUE bj Bias(bj) MSE(bj) Bias(SEj) 95% Coverage Probability Bias(bj) MSE(bj) Bias(SEj) 95% Coverage Probability

Sex 50% male 0 �.008 .052 .006 .954 .000 .045 .025 .951
Age 50 years .05 .001 .000 .002 .961 .000 .000 .003 .961
Race 30% black 2 .014 .080 .038 .924

FREQUENCY

AMONG WITH ADJUSTMENT FOR RACE WITHOUT ADJUSTMENT FOR RACE

HAPLOTYPE Whites Blacks TRUE bj Bias(bj) MSE(bj) Bias(SEj) 95% Coverage Probability Bias(bj) MSE(bj) Bias(SEj) 95% Coverage Probability

0 .235 .382 …a

1 .183 0 0 �.020 .111 .001 .942 �1.10 1.311 �.021 .045
2 .173 0 0 .037 .106 .011 .960 �1.02 1.142 .002 .055
3 .117 .190 0 .063 .066 �.005 .942 .051 .053 �.002 .946
4 .113 .184 0 .063 .067 �.006 .938 .058 .057 �.005 .942
5 .097 .158 0 .018 .070 �.007 .945 .015 .057 �.002 .952
6 .036 .059 0 .091 .166 �.011 .943 .073 .135 �.008 .934
7 .017 .028 0 .130 .369 �.031 .940 .093 .306 �.027 .952

NOTE.—For 250 cases and 250 controls.
a Reference.

A Case-Control Study with Six SNPs
of Apolipoprotein CIII

The study and its sampling process have been described
in detail elsewhere (Cheng et al. 1999; Zee et al 2002).
In brief, within a cohort of 779 patients undergoing per-
cutaneous transluminal coronary angioplasty, 342 devel-
oped restenosis within 6 mo (case patients), whereas 437
remained restenosis free (control individuals). From each
participant, blood samples were collected and were geno-
typed for SNPs in seven candidate genes, including apo-
lipoprotein CIII. Six SNPs (C�628A, C�482T, T�455C, C1100T,
C3175G, and T3206G) in the apolipoprotein CIII gene were
genotyped. The objective of this analysis was to discover
haplotypes, of these six SNPs, that were significantly as-
sociated with the disease phenotype. We analyzed the ge-
notype data at individual loci by using the logistic regres-
sion model described in the “Methods” section, and we
estimated haplotype frequencies and their SEs, as well as
odds ratios and their 95% CIs. The analysis identified 11
common haplotypes, shown in table 5. Two haplotype
sequences (CCTTCG and ACCCCT) have odds ratios of
0.63 and 0.61 and 95% CIs of 0.44–0.91 and 0.38–0.97,
respectively. This result suggests that individuals with
haplotype CCTTCG or haplotype ACCCCT are likely to
be at a significantly lower risk for the disease, in compari-
son with those with most common haplotype sequence
(CCTCCT). Even though the haplotype-based associa-
tion is modest, this finding is interesting in the context
of earlier analyses performed by Zee et al. (2002), who
have shown that, by univariate analyses, none of indi-
vidual SNP alleles in apolipoprotein CIII are significantly
associated with restenosis. However, in the multiple lo-

gistic regression analysis that includes multiple SNPs,
apolipoprotein CIII was identified as one of most sig-
nificant predictors for the occurrence of restenosis.

Discussion

We have introduced an estimating-equation approach
for the assessment of disease associations with SNP hap-
lotypes when adjustment for covariates (e.g., environ-
mental factors, lifestyle variables, clinical variables, or
treatment) is performed in case-control studies. This
method has several notable properties: First, it is de-
signed for case-control studies with no available fami-
ly data. If family data were available, it could be used
to improve haplotyping efficiency. Second, this method
focuses on associations between haplotype distribu-
tions and the disease phenotype, thus avoiding mis-
classification errors due to the “reconstructions of
haplotypes.” Third, this method can be scaled up to
deal with 1100 SNPs. Fourth, it does not require any
assumptions of linkage disequilibrium, recombination,
or other population genetic parameters, and, hence, the
results tend to be robust. Of course, in the presence of
strong linkage disequilibrium, the current method be-
comes particularly efficient in identifying common
haplotypes and further estimating their haplotype fre-
quencies. The analytic derivation helps us to prove
that estimated regression coefficients are consistent
and that they have asymptotic normal distributions
with appropriately estimated asymptotic variances. To
evaluate approximations of asymptotic results in finite
samples, we performed Monte Carlo simulations. Sim-
ulation results demonstrated that estimated regression
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Table 5

Estimated Haplotype Frequencies and Their SEs for All Common
Haplotypes

SNP Marker (Sequence)
Haplotype
Frequency SE Odds Ratio (95% CI)

000000 (CCTCCT) .401 .017 1.00 (reference)
111000 (ATCCCT) .118 .012 1.01 (.70–1.45)
000101 (CCTTCG) .128 .013 .63a (.44–.91)
111111 (ATCTGG) .077 .009 1.02 (.70–1.51)
101000 (ACCCCT) .082 .010 .61a (.38–.97)
000001 (CCTCCG) .065 .010 1.16 (.73–1.86)
111101 (ATCTCG) .047 .010 .73 (.41–1.31)
101001 (ACCCCG) .029 .007 .96 (.49–1.86)
111001 (ATCCCG) .017 .012 .55 (.14–2.16)
110101 (ATTTCG) .013 .004 .93 (.38–2.29)
000100 (CCTTCT) .009 .004 .90 (.29–2.82)

NOTE.—Expected number of each haplotypes is �5 copies.
a Indicates that the odds ratio is different from one at a significance

level of 5%.

coefficients in the logistic regression are generally un-
biased and that estimated SEs are correct. Finally, cov-
erage probabilities are close to the desired level, so that
the false-positive error rates are controlled.

Also using the Monte Carlo simulation method, we
assessed the impact that admixture had on estimated
regression coefficients, SEs, and coverage probabili-
ties. When adjustment for the population origin is
not made in the logistic regression model, simulation
results show that estimated regression coefficients for
the “confounding haplotypes” are clearly biased, con-
sistent with the concern regarding admixture (Elston
1999). The simulation results also show that biases
due to admixture could be minimized, if the associ-
ated sources are identified and incorporated into the
logistic regression model.

The challenge in correction for admixture biases is
that the population origin is often unknown. For ex-
ample, within the same racial group—such as whites
from different parts of Europe—individuals may have
different genetic constellations, owing to differences in
their recent evolutionary history. One approach is to
use a latent-class model to account for unmeasured
population substructures (Satten et al. 2001), but its
validity relies on assumptions about latent-class mod-
els. An alternative approach is to gather a set of genet-
ic markers that are known to vary from ethnic group
to ethnic group and to perform cluster analysis on sub-
jects of identified subpopulations (Pritchard et al. 2000).
Once subpopulations are discovered, the population
structure can then be adjusted for, using the methods
described in the present article. When ethnicity-related
genetic markers are gathered, one can also treat them
as surrogates and simply adjust for them via the logistic
regression model described above.

Although we appreciate the strengths of this method-
ology, it is also important to discuss its potential limita-
tions. First, when the number of common haplotypes is
relatively large, the procedure may involve estimation of
many regression coefficients in the logistic regression (eq.
[1]). As in typical categorical data analyses, estimating
an excessive number of parameters diminishes the power
of such analysis. To avoid this limitation, one needs to
focus on situations in which the number of common
haplotypes is relatively small; for example, when mul-
tiple SNPs arise from a single candidate gene or when
10–100 physically adjacent SNPs are considered, the
number of common haplotypes has been shown to be
much fewer than the theoretical number of all possible
haplotypes (Drysdale et al. 2000; Daly et al. 2001). In
the event that the analysis has to deal with many com-
mon haplotypes, it is advisable to adopt a stepwise pro-
cedure: evaluating common haplotypes one at a time by
the regression model, then two at a time, and promptly
terminating the stepwise procedure when the regression

model is saturated. Another limitation of this method
is associated with the rare-disease assumption. Under
this assumption, haplotype frequencies computed on the
basis of controls approximate those in the general pop-
ulation. Specifically, a population haplotype frequency
may be decomposed into the weighted average of hap-
lotype frequencies in controls and in cases, via p p

. The bias in the estimationp Pr (d p 0) � p Pr (d p 1)0 1

of haplotype frequency by use of controls may be writ-
ten as p � p p �p [1 � Pr (d p 0)] � p Pr (d p 1) p0 0 1

. Because and are between 0Pr (d p 1)(p � p ) p p1 0 1 2

and 1 and, hence, ranges from �1 to 1, the(p � p )1 0

absolute value of this bias is less than . WhenPr (d p 1)
the disease incidence rate is !1%, the bias in the estima-
tion of haplotype frequencies is !1%. However, if this
analytic approach is used for common traits (e.g., a
certain hair color), then this bias could be substantial.
Of course, when dealing with common traits, one prob-
ably would not choose a case-control design. The third
limitation worth noting is that the assumptions of the
logistic regression model itself (eq. [1]) could be vio-
lated. For example, the probability of being affected
may be linearly associated with haplotypes and/or co-
variates, or the functional relationship may follow an
exponential form. Nevertheless, one can always view
the logistic regression as an empirical model, approxi-
mating the relationship of the disease probability with
haplotypes and covariates. In fact, in the absence of
covariates, the logistic form imposes no assumptions.

As noted earlier (in the “Introduction” section), oth-
er methods may also be used for the analysis of multi-
ple SNPs in case-control studies. One method is to cor-
relate individual SNP genotypes (0/0, 0/1, and 1/1) or
their combinations with the disease phenotype by us-
ing, for example, logistic regression (Breslow and Day
1980). An example of such an approach is the stepwise
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strategy for the selection of SNP alleles—or logical com-
binations of SNP alleles—with the strongest statistical
associations, as has been explored by Cordell and Clay-
ton (2002). Although conceptually straightforward, this
method may become inefficient, since it has to numerate
through all possible combinations of SNPs without tak-
ing advantage of the preserved haplotype structure with-
in a functional gene. Furthermore, the interpretation of
regression coefficients associated with genotypes at mul-
tiple loci and their cross products is also challenging. In
contrast, our method uses the genomic structure to con-
struct the distribution of common haplotypes. Since the
number of common haplotypes in the population is small,
our approach effectively reduces the large dimensionality
of all possible haplotypes to a few and is thus an effective
and meaningful way to gain statistical efficiency in the
discovery of haplotypes of interest. However, if multi-
ple SNPs were selected randomly from the genome, the
number of common haplotypes is expected to be high.
In this case, the advantage of our approach is dimin-
ished. Hence, haplotype-based methods, such as the one
proposed in the present article, should be used either
for multiple SNPs within candidate genes or when se-
lected SNPs are physically close to each other.

Indeed, our haplotype-based method is closely con-
nected with several other haplotype-based methods that
correlate multiple SNPs with complex disease pheno-
types (Hartl and Clark 1997; Drysdale et al. 2000). One
such method in family studies is to collect genotype data
from both parents and to compare individual marker
alleles with the father’s and mother’s alleles, to deter-
mine the phase of alleles (Wijsman 1987). Although
family-based haplotyping is thought to be ideal, rou-
tine gathering of genotypes from parents in case-con-
trol studies is costly and ethically sensitive. Hence, the
family-based case-control study may be challenging un-
less such family data have already been gathered and
genotypes are readily available. Alternatively, one may
haplotype multiple SNPs experimentally (Weston et al.
1992)—for example, using long-range PCR or in vitro
hybridization (Vogelstein and Kinzler 1998; Fallin and
Schork 2000). However, experimental phase-resolution
methods remain impractical for large numbers of SNPs
and are not upwardly scalable to a large number of
SNPs.

Another class of haplotype-based methods, one that
does not rely on experimental methods or on family data,
is to statistically infer haplotypes from multiple SNPs.
The cladistic method is applicable to haplotype-based
analysis with three or four SNPs. Basically, from all
cases and controls, one can unambiguously identify
haplotypes of several SNPs, on a subset of cases and
a subset of controls, and use these identified haplotypes
to establish the correlation of interest, ignoring the re-
maining haplotypes (Haviland et al. 1995). As expected,

ignoring partially informative haplotypes leads to a loss
of efficiency, which can become quite significant as the
number of SNPs increases. Typically, such a method is
applicable to, at most, three or four SNPs. Recently,
Schaid et al. (2002) have proposed a score test for haplo-
type association. Because the test statistic is generated
under the null hypothesis, it requires calculation of hap-
lotype-related distribution for the entire population,
without inferring haplotypes for individual subjects,
thus bypassing the computational challenge described
here. However, the key assumption required by the test
statistics is the absence of gene-environment interaction.
Additionally, one is unable to estimate haplotype-spe-
cific log odds ratios, which could be useful for further
validation studies, as well as for genetic counseling. For
the reconstruction of haplotypes by use of partially ob-
served phase information, another class of methods is
to infer haplotypes on the basis of empirical distribu-
tions, tolerating some degree of misclassification error
(Hallman et al. 1999). Recently, a Markov-chain Monte
Carlo method to estimate haplotype frequencies, as well
as to construct haplotypes, has been proposed (Stephens
et al. 2001). Likewise, Niu et al. (2002) have proposed
a Bayesian method to estimate haplotype frequencies,
as well as to infer haplotypes. However, reconstructed
haplotypes, regardless of analytic strategies, will expe-
rience a degree of misclassification error. If such errors
are naively ignored in the downstream analysis, then
they may bias estimated parameters and inflate false-
positive errors.

To demonstrate this point, we considered two possible
analyses with reconstructed haplotypes via a logistic re-
gression. One analysis uses the best-reconstructed hap-
lotypes as covariates in the logistic regression analysis,
whereas the other includes the best-reconstructed hap-
lotypes only if their calculated probabilities are 180%.
Using the coalescent process described above, we simu-
lated several different data sets and applied the two logis-
tic regression analyses along with our method. Interest-
ingly, we found that in several simulations, in which hap-
lotypes can be reliably inferred, results from all three
analyses are fairly comparable (not shown). Further-
more, under the null hypothesis, estimates appear to be
unbiased and to retain appropriate coverage probabil-
ities. In contrast, when haplotypes cannot be reliably
inferred and certain haplotypes are significantly asso-
ciated with the phenotype, biases inherent in the recon-
struction of haplotypes could be rather significant, an
example of which is shown in table 6. Clearly, both
logistic regression analyses have substantial biases, and
their coverage probabilities are not consistent with the
designated 95%. Systematic comparison of methods us-
ing reconstructed haplotypes versus our methods is very
important, and a full exploration of this comparison is
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beyond the scope of the present article. A separate ar-
ticle will report findings from a systematic comparison.

We are encouraged by the preliminary results obtained
to date, and we plan several further improvements. First,
we plan to perform more simulation studies, under var-
ious plausible scenarios, such as different haplotype-fre-
quency patterns, different degrees of recombination, and
different degrees of association. Second, it is also impor-
tant to compare this approach with the current standard
approach, which treats inferred haplotypes as true hap-
lotypes in the logistic regression. Although, theoretical-
ly, the standard approaches could induce biases, a more
practical issue is, What is the magnitude of the biases
with practical sample sizes? Third, a natural extension
of the current approach would be to incorporate non-
binary phenotypes, such as continuous phenotypes. Fi-
nally, we intend to develop methods for the evaluation
of case-control study designs, such as the number of
cases and controls required to achieve the desired power.

A compiled computer program, HPlus, has been de-
veloped. It is available to academic researchers on re-
quest, for use in not-for-profit research.

In summary, the completion of the Human Genome
Project will provide an array of SNPs from 30,000–
40,000 functional genes (International Human Genome
Sequencing Consortium 2001; Venter et al. 2001). The
availability of these SNPs will allow us to directly assess

their associations with phenotypes of interest, regardless
of whether such phenotypes have any obvious familial
tendency. Equipped with appropriate study designs and
analytic tools, investigators will be able to conduct pop-
ulation-based genetic studies focusing on associations of
both genes and environmental factors with complex dis-
eases.
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Appendix A

Derivation of the Estimating Equations

There is a wealth of literature on logistic regression and its variations for case-control studies (Cox 1972; Prentice
and Pyke 1979). On the basis of the retrospective log likelihood function, one can readily formulate the estimating
equation for as(y,b)

(d � m )�1 i ii(d � m ) p p 0 ,� 1 2 i i( ) ( )˙ 1 2I(h ,h ,x )i I(h ,h ,x )(d � m )i i i � i i i i ii

where is the partial derivative of and are the disease phenotype and the mean as1 2 1 2ˆ ˆİ(h ,h ,x ,b) I(h ,h ,x ,b) (d ,m )i i i i i i i i

defined in equation (3). Note that the first equality of 0 ensures the constraint associated with case-control studies
(Whittemore 1995).

When phases are unknown, one may construct an estimating equation by integrating latent phases, and theQ i

resulting estimating equation may be written asU(y,b)

E [(d � m ) d g ,d ,x ]1 Q i i i i iiE (d � m ) d g ,d ,x p p 0 ,� �Q 1 2 i i i i i( ) ( )i ˙ 1 2[ ] ˙I(h ,h ,x )i i E [I(h ,h ,x )(d � m ) d g ,d ,x ]i i i Q i i i i i i i ii

where the conditional expectation is defined through the conditional probability . The conditionalf(Q d g ,d ,x )i i i i

probability, which can be approximated, is derived in appendix B.
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Appendix B

Approximation to f(Q d g ,d ,x )i i i i

By Bayes’ rule, the probability function may be written as

f(Q ,g ,d ,x ) Pr (d dQ ,g ,x )f(Q ,g ,x )i i i i i i i i i i iPr (Q d g ,d ,x ) p pi i i i � f(Q ,g ,d ,x ) � Pr (d dQ ,g ,x )f(Q ,g ,x )i i i i i i i i i i iQ Qi i

1 2 1 2 1 2 1 2Pr (d d h ,h ,x )f(h ,h )f(x ) Pr (d d h ,h ,x )f(h ,h )i i i i i i i i i i i i ip p
1 2 1 2 1 2 1 2� Pr (d d h ,h ,x )f(h ,h )f(x ) � Pr (d d h ,h ,x )f(h ,h )i i i i i i i i i i i i iQ Qi i

under the assumption that the covariates are independent of haplotypes. When the disease phenotype is uncom-
mon, the marginal probability of disease is small, and the marginal probability of nondisease1 2Pr (d p 1 d h ,h ,x )i i i i

is close to 1. Hence, the disease probability may be approximated by1 2Pr (d p 0 d h ,h ,x )i i i i

1 2exp [a � I(h ,h ,x ,b)]i i i1 2 1 2Pr (d p 1 d h ,h ,x ) p ≈ exp [a � I(h ,h ,x ,b)] ,i i i i i i i1 21 � exp [a � I(h ,h ,x ,b)]i i i

since is much smaller than 1. Substituting these approximations into the above probability1 2exp [a � I(h ,h ,x ,b)]i i i

function, one obtains, for cases, an approximated function,

1 2 1 2Pr (d p 1 d h ,h ,x )f(h ,h )i i i i i iPr (Q d g ,d p 1,x ) pi i i i 1 2 1 2� Pr (d p 1 d h ,h ,x )f(h ,h )i i i i i iQi

1 2 1 2 1 2 1 2exp [a � I(h ,h ,x ,b)]f(h ,h ) exp [I(h ,h ,x ,b)]f(h ,h )i i i i i i i i i i≈ p .
1 2 1 2 1 2 1 2� exp [a � I(h ,h ,x ,b)]f(h ,h ) � exp [I(h ,h ,x ,b)]f(h ,h )i i i i i i i i i iQ Qi i

Similarly, for controls, the approximation is

1 2 1 2 1 2Pr (d p 0 d h ,h ,x )f(h ,h ) f(h ,h )i i i i i i i iPr (Q d g ,d p 0,x ) p ≈ .i i i i 1 2 1 2 1 2� Pr (d p 0 d h ,h ,x )f(h ,h ) � f(h ,h )i i i i i i i iQ Qi i

Putting these together, may be represented byPr (Q d g ,d ,x )i i i i

1 2 1 2exp [d I(h ,h ,x ,b)]f(h ,h )i i i i i iPr (Q d g ,d ,x ) ≈ .i i i i 1 2 1 2� exp [d I(h ,h ,x ,b)]f(h ,h )i i i i i iQi

Appendix C

Derivation of Derivative Matrix for the Joint Estimating Equation

As noted in the text, the joint estimating equation for may be written as(y,b,p)

U(y) (d � m )i i

U(b) p X (d � m ) Pr (Q d g ,d ,x ) ,�� i i i i i i i( ) ( )i Qi 1 2U(p) (1 � d )[I(h ,h ) � 2p]i i i

where represents a vector of covariate function; the indicator function is used here1 2 1 2˙X p I(h ,h ,x ,b) I(h ,h )i i i i i i

generically to denote . Note that, by construction,1 2 1 2 1 2 ′I(h ,h ) p [I(h p h ) � I(h p h ), … ,I(h p h ) � I(h p h )]i i i 1 i 1 i H i H



1246 Am. J. Hum. Genet. 72:1231–1250, 2003

should be free from any unknown parameters. The derivative matrix of the above joint estimating equationXi

with respect to may be written as(y,b,p)

�U(y)/y �U(y)/b �U(y)/p
�U(y,b,p)

p �U(b)/y �U(b)/b �U(b)/p .( )�(y,b,p)
�U(p)/y �U(p)/b �U(p)/p

Let the notation denote the ith row and the jth column in the above derivative matrix. All elements in the(i,j)
above derivative matrix are listed below:

(1,1)

�U(y)
p � E[m (1 � m ) d d ,g ,x ]� i i i i i

�y i

�U(y) �′p � E[m (1 � m )X d d ,g ,x ] � (d � m ) Pr (Q d d ,g ,x )� ��i i i i i i i i i i i i
�b �bi i Qi

�′p � E[m (1 � m )X d d ,g ,x ] � (d � m ) Pr (Q d d ,g ,x ) ln Pr (Q d d ,g ,x )� ��i i i i i i i i i i i i i i i i
�bi i Qi

′ 1 2� � exp (d b X )f(h ,h )i i i iln Pr (Q d d ,g ,x ) p lni i i i ′ 1 2�b �b � exp (d b X )f(h ,h )i i i iQi

� ′ 1 2 ′ 1 2p [(d b X ) � ln f(h ,h ) � ln exp (d b X )f(h ,h )]�i i i i i i i i
�b Qi

′ 1 2 ′ 1 2 ′( )�/�b exp (d b X )f(h ,h )i i i i exp (d b X )f(h ,h )d Xi i i i i i′ ′p d X � p d X �� �i i i i′ 1 2 ′ 1 2
Q Q� exp (d b X )f(h ,h ) � exp (d b X )f(h ,h )i ii i i i i i i iQ Qi i

′ ′p d [X � E(X d d ,g ,x )]i i i i i i

(1,2)

�U(y) ′ ′p � E[m (1 � m )X d d ,g ,x ] � cov[(d � m ),d X d d ,g ,x ]� �i i i i i i i i i i i i i
�b i i

�U(y) � �
p (d � m ) Pr (Q d g ,d ,x ) p (d � m ) Pr (Q d g ,d ,x )�� ��i i i i i i i i i i i i

�p �p �pi Q i Qi i

�
p (d � m ) Pr (Q d g ,d ,x ) ln Pr (Q d g ,d ,x )�� i i i i i i i i i i

�pi Qi
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′ 1 2 1 2� � exp [d b I(h ,h ,x )]f(h ,h )i i i i i iln Pr (Q d g ,d ,x ) p lni i i i ′ 1 2 1 2�p �p � exp [d b I(h ,h ,x )]f(h ,h )i i i i i iQi

� �′ 1 2 1 2 ′ 1 2 1 2{ }p ln exp [d b I(h ,h ,x )]f(h ,h ) � ln exp [d b I(h ,h ,x )]f(h ,h )�i i i i i i i i i i i i
�p �p Qi

′ 1 2 1 2( )�/�p � exp [d b I(h ,h ,x )]f(h ,h )i i i i i i
Q�1 1 2 ip V [I(h ,h ) � 2p] �i i ′ 1 2 1 2� exp [d b I(h ,h ,x )]f(h ,h )i i i i i iQi

′ 1 2 1 2( )�/�p exp [d b I(h ,h ,x )]f(h ,h )i i i i i i
�1 1 2p V [I(h ,h ) � 2p] ��i i ′ 1 2 1 2

Q � exp [d b I(h ,h ,x )]f(h ,h )i i i i i i iQi

�1 1 2 �1 1 2p V [I(h ,h ) � 2p] � E[V [I(h ,h ) � 2p] d d ,g ,x ]i i i i i i i

(1,3)

�U(y) 1 2 ′ �1p cov[(d � m ),[I(h ,h ) � 2p]V d g ,d ,x ]� i i i i i i i
�p i

(2,1)

�U(b)
p � E[X m (1 � m ) d d ,g ,x ]� i i i i i i

�y i

�U(b) �′p E[X Xm (1 � m ) d d ,g ,x ] � X (d � m ) Pr (Q d g ,d ,x )� ��i i i i i i i i i i i i i i
�b �bi i Qi

�′p � E[X Xm (1 � m ) d d ,g ,x ] � X (d � m ) Pr (Q d g ,d ,x )� ��i i i i i i i i i i i i i i
�bi i Qi

(2,2)

′ ′�U(b)/�b p � E[X Xm (1 � m ) d d ,g ,x ] � d cov[X (d � m ),X d d ,g ,x ]� �i i i i i i i i i i i i i i i
i i

�U(b) � �
p X (d � m ) Pr (Q d g ,d ,x ) p X (d � m ) Pr (Q d g ,d ,x )�� ��i i i i i i i i i i i i i i

�p �p �pi Q i Qi i

�
p X (d � m ) Pr (Q d g ,d ,x ) ln Pr (Q d g ,d ,x )�� i i i i i i i i i i i

�pi Qi

(2,3)

�U(b)
�1 1 2p cov{X (d � m ),V [I(h ,h ) � 2p] d g ,d ,x }� i i i i i i i i

�p i
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(3,1)

�U(p)
p 0

�y

(3,2)

�U(p)
p 0

�b

�U(p) � 1 2p [I(h ,h ) � 2p](1 � d ) Pr (Q d g ,d ,x )�� i i i i i i i
�p �p i Qi

�1 2p �2 (1 � d )1 Pr (Q d g ,d ,x ) � (1 � d )[I(h ,h ) � 2p] Pr (Q d g ,d ,x )�� ��i i i i i i i i i i i i
�pi Q i Qi i

(3,3)

�U(p)
�1 1 2p �2N 1 � (1 � d )V var[I(h ,h ) � 2p d d ,g ,x ]�0 i i i i i i

�p i

′E[m (1 � m ) d d ,g ,x ] E[m (1 � m )X d d ,g ,x ] 0i i i i i i i i i i i
�U(y,b,p) ′� p E[X m (1 � m ) d d ,g ,x ] E[X Xm (1 � m ) d d ,g ,x ] 0� i i i i i i i i i i i i i[( )�(y,b,p) i

0 0 2(1 � d )1i

′ ′ �10 d cov[(d � m ),X d d ,g ,x ] cov[(d � m ),F V d g ,d ,x ]i i i i i i i i i i i i i

′ ′ �1� 0d cov[X (d � m ),X d d ,g ,x ] cov{X (d � m ),F V d g ,d ,x }i i i i i i i i i i i i i i i ]( )
�10 0 (1 � d )V var[F d d ,g ,x ]i i i i i

in which .1 2F p I(h ,h ) � 2pi i i

Appendix D

Consistency of Estimates of (y,b)

One important aspect of this development is to prove the consistency of estimating equations, in the sense that
estimated parameters are consistent as the number of samples approaches �. To prove this consistency, it is sufficient
to prove that the estimating function asymptotically approaches 0. Consider the situation in which haplotype
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frequencies are consistently estimated and are held consistent. By the law of large numbers, the estimating function
on the left-hand side of equation (4), divided by the sample size n, may be approximated by

1 1
U(y,b) p (d � m )f(Q d g ,d ,x )�� i i i i i i( )Xn i Q ii

E [d � m d g ,d ,x ] d � E [m d g ,d ,x ]1 1Q i i i i i i p i i i ii ip p� �( ) ( )n ni E [X (d � m ) d g ,d ,x ] i E [X (d � m ) d g ,d ,x ]Q i i i i i i Q i i i i i ii i

�1 �1n [d � E (m d g ,d ,x )] n [N � E (m d g ,d ,x )]� �i p i i i i 1 Q i i i ii ii ip p( ) ( )�1 �1n E [X (d � m ) d g ,d ,x ] n E [X (d � m ) d g ,d ,x ]� �Q i i i i i i Q i i i i i ii ii i

0 0 0 0
r p p p ,( ) ( ) ( )( ){ }E E [X (d � m ) d g ,d ,x ] E [X (d � m )] E E [X (d � m ) d g ,x ,Q ] 0g ,x ,d Q i i i i i i g ,x ,d ,Q i i i g ,x ,Q d i i i i i ii i i i i i i i i i i i

where is the number of cases and “r” represents convergence, when the number of independent samples becomesn1

sufficiently large. Hence, the estimating function above approaches 0 asymptotically. This convergence indicates
that estimated parameter is also consistent via the Taylor expansion.

Electronic-Database Information

The URL for data presented herein is as follows:

R. Hudson’s Web Site, http://home.uchicago.edu/˜rhudson1/
source/mksamples.html
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